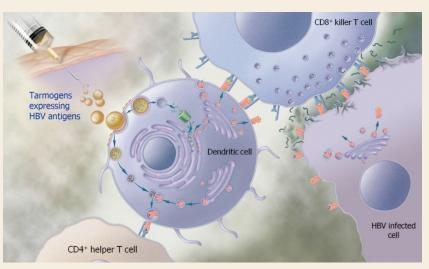
Safety, Tolerability, and Immunogenicity of GS-4774, an HBV-Specific Therapeutic Vaccine, in Healthy Volunteers

Anuj Gaggar,¹ Claire Coeshott,² David Apelian,² Tim Rodell,² Gong Shen,¹ Mani Subramanian,¹ John McHutchison¹ ¹Gilead Sciences, Inc., Foster City, CA; ²Globelmmune, Louisville, CO



333 Lakeside Drive Foster City, CA 94404 800-445-3252

Introduction

- ◆ ~350 million people are infected worldwide with hepatitis B virus (HBV)¹
- Current treatments for chronic HBV adequately control viremia, but lead to loss of hepatitis B surface antigen (HBsAg) and anti-HBsAg seroconversion at low rates²
- A diminished T-cell response to HBV viral antigens is characteristic of chronic HBV infection³⁻⁵
- GS-4774 is a yeast-based vaccine expressing a recombinant protein aimed at eliciting an HBV-specific immune response⁶

Mechanism of Action

- Activates dendritic cells after phagocytosis
- ◆ Recombinant antigen epitopes are displayed via major histocompatibility class I and II and stimulate CD4+ and CD8+ T cells
- ◆ Reduces levels of regulatory T cells

GS-4774 Structure Large S (env) Core **GS-4774 Recombinant Antigen** M = MADEAP metabolic stability tag X = 60 amino acids

 $His_6 = 6$ histidine-tag

Objective

Large S = 399 amino acids

Core = 182 amino acids

◆ To assess the safety and immunogenicity of GS-4774 in healthy subjects

Methods Study Design GS-4774 Weekly (10, 40, or 80 YU) GS-4774 Monthly (10, 40, or 80 YU) ◆ GS-4774 administration Immunology assessment

- Single-center, open-label, dose-escalation study
- Healthy subjects without history of HBV vaccination received GS-4774 at 1 of 3 doses in 1 of 2 different dosing schedules
- Primary endpoints: safety and tolerability of GS-4774
- Secondary endpoints: immunogenicity of various doses and dosing regimens of GS-4774, as measured by:
- Interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISpot)
- Lymphocyte proliferation assay (LPA)
- Antibody responses to HBsAg, hepatitis B core antigen (HBcAg), and Saccharomyces cerevisiae

Key inclusion criteria

- Age ≥18 years
- Negative scratch test for hypersensitivity to S cerevisiae
- Key exclusion criteria
- History of HBV, hepatitis C virus, or HIV
- History of HBV vaccination
- History of autoimmune disease
- History of positive serum HBsAg

ELISpot

- ◆ Peripheral blood mononuclear cells (PBMCs) were incubated ex vivo with 3 HBV recombinant antigens (HBsAg, HBcAg, and hepatitis B X antigen [HBx]), pools of overlapping 15-mer peptides representing target insert sequence of GS-4774, and pools of discrete peptide epitopes previously identified as cognate peptides for HBV-specific or GS-4774-specific T-cell responses
- Controls: medium alone, phytohemagglutinin (PHA), and pool of known CD8+ T-cell peptide epitopes
- IFN_γ+ cells/million PBMCs were enumerated and scores adjusted for background (medium alone) and baseline response
- Immune response was prespecified by algorithms that evaluated IFN_γ+ T-cell responses by breadth, duration, and magnitude

Lymphocyte Proliferation Assay (LPA)

- ◆ PBMCs were incubated ex vivo with HBsAg, HBcAg, and HBx for 6 days
- ◆ Proliferation was measured by uptake of ³H-thymidine added for final 6 hours of incubation
- ◆ Candida albicans, tetanus toxoid, and PHA were used as positive controls
- Response: on-treatment response with stimulation index (SI) ≥2. where SI =

median cpm of cells with antigen median cpm of cells with assay medium

Results

Demographics

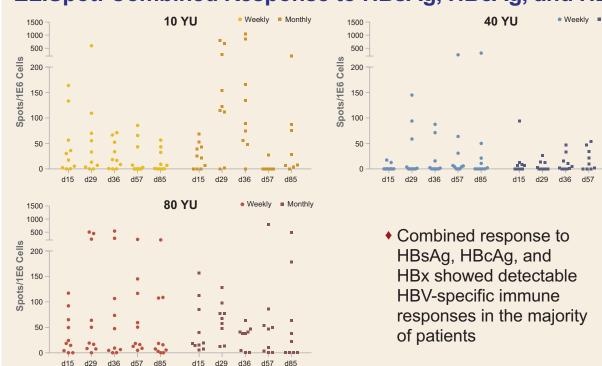
	10 10		40 10		60 T O	
	Weekly (n=10)	Monthly (n=10)	Weekly (n=10)	Monthly (n=10)	Weekly (n=10)	Monthly (n=10)
Mean age, y (IQR)	48 (39–55)	43 (33–47)	37 (35–40)	33 (26–40)	39 (30–44)	39 (33–45)
Men, n (%)	2 (20)	4 (40)	4 (40)	7 (70)	5 (50)	3 (30)
Race, n (%)						
White	9 (90)	10 (100)	10 (100)	10 (100)	8 (80)	9 (90)
Black	1 (10)	0	0	0	0	1 (10)
Native American	0	0	0	0	2 (20)	0
Hispanic/Latino, n (%)	5 (50)	6 (60)	8 (80)	8 (80)	7 (70)	8 (80)
IQR, interquartile range.						

Adverse Events

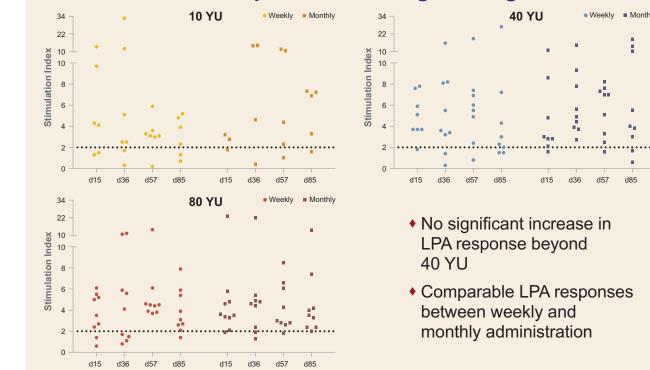
	10 YU		40 YU		80 YU	
	Weekly (n=10)	Monthly (n=10)	Weekly (n=10)	Monthly (n=10)	Weekly (n=10)	Monthly (n=10)
Patients with ≥1 AE, n (%)	7 (70)	4 (40)	9 (90)	6 (60)	7 (70)	6 (60)
Mild	5 (50)	4 (40)	8 (80)	5 (50)	6 (60)	5 (50)
Moderate	2 (20)	0	1 (10)	1 (10)	1 (10)	1 (10)
Patients with ≥1 serious AE, n (%)	0	0	0	0	0	0
No. of AEs	19	10	70	19	101	93
Mild, n (% total)	17 (89)	10 (100)	69 (99)	18 (95)	99 (98)	91 (98)
Moderate, n (% total)	2 (11)	0	1(1)	1 (5)	2 (2)	2 (2)
Severe, n (% total)	0	0	0	0	0	0
AE, adverse event.						

Injection-Site Reactions

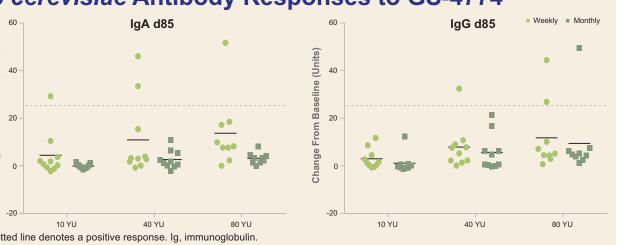
	10 YU		40 YU		80 YU	
	Weekly (n=10)	Monthly (n=10)	Weekly (n=10)	Monthly (n=10)	Weekly (n=10)	Monthly (n=10)
Subjects with reactions, n (% total)	1 (10)	1 (10)	8 (80)	2 (20)	6 (60)	5 (50)
Injection-site reactions, n (% total AEs)	4 (21)	1 (10)	51 (73)	3 (16)	76 (77)	67 (74)
Mild, n (% reactions)	4 (100)	1 (100)	51 (100)	3 (100)	74 (97)	67 (100)
Moderate, n (% reactions)	0	0	0	0	2 (3)	0


- ◆ The majority of injection-site reactions were mild
- 2 moderate injection-site reactions (pain) in 1 subject in weekly 80-YU cohort
- 2 mild injection-site reactions required therapy for relief (Tylenol [acetaminophen], ice)

Immunogenicity Summary


	10 YU		40 YU		80 YU	
n/N (%)	Weekly	Monthly	Weekly	Monthly	Weekly	Monthly
Any LPA response	6/8 (75)	4/5 (80)	9/9 (100)	9/9 (100)	9/9 (100)	8/10 (80)
Any ELISpot response	5/10 (50)	8/10 (80)	4/10 (40)	3/10 (30)	7/9 (78)	7/10 (70)

- All dose groups showed high levels of response by LPA
- ◆ No significant increase in ELISpot responses with weekly administration


ELISpot: Combined Response to HBsAg, HBcAg, and HBx

LPA: Combined Response to HBsAg, HBcAg, and HBx

S cerevisiae Antibody Responses to GS-4774

◆ No increases in hepatitis B surface or core antibody titers seen in any dose group during study

Human Leukocyte Antigen (HLA) Association With ELISpot Response

HLA Allele	Percent Subjects With Allele	Recombinant Antigen Response p-value*	Peptide Response p-value*				
DQB1*03	60	1.0	.79				
C*07	47	.80	.30				
DRB1*04	45	1.0	.61				
A*02	40	.80	.18				
DQB1*05	33	.42	.78				
DQB1*02	28	1.0	.14				
DQB1*06	28	1.0	.25				
C*03	28	1.0	.25				
B*35	27	.77	1.0				
A*24	27	1.0	.55				
A*68	27	.56	.78				
C*04	27	1.0	.78				
B*39	27	1.0	1.0				
DRB1*07	25	1.0	.015				
DRB1*01	22	.36	.34				
*p-value significance <0.001 based on Bonferroni correction for multiple hypothesis testing.							

♦ No association of common HLA alleles with ELISpot response to peptides or recombinant antigens

Conclusions

◆ GS-4774

- Was well-tolerated in healthy subjects
- Elicited an immune response with monthly administration at all doses evaluated
- Elicited an immune response to recombinant antigens and peptides
- Immunogenicity was independent of host HLA alleles
- ◆ Further evaluation of GS-4774 in virally suppressed chronic HBV patients is ongoing

References

1. World Health Organization Hepatitis B Fact Sheet WHO/204, October 2000; 2. Kwon H, et al. Nat Rev Gastroenterol Hepatol 2011;8:275-84; 3. Bertoletti A, et al. J Gen Virol 2006;87:1439-49; 4. Urbani S, et al. Hepatology 2005;41:826-31; 5. Thimme R, et al. J Virol 2003;77:68-76; 6. Stubbs AC, et al. Nature Med 2001;7:625-9.

Acknowledgments

This study was funded by Gilead Sciences, Inc.

Disclosures

A. Gaggar, G. Shen, M. Subramanian, and J. McHutchison are employees of and own stock in Gilead; C. Coeshott and T. Rodell are employees of Globelmmune; D Apelian: no relevant financial relationship reported