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Chronic hepatitis B (CHB) remains a significant unmet medical
need. An estimated 350million people are chronically infected
with hepatitis B virus (HBV) worldwide and are therefore at
significantly increased riskof advanced liver disease.1 Substan-
tial progress in the treatment of CHBhas beenmade in the past
two decades with the approval of interferon- (IFN-) based and
nucleoside/nucleotide-based therapies. Although these two
classes of agents have revolutionized the management of
CHB, each has limitations.2,3 Pegylated interferon-alpha
(PEG-IFN-α) represents a finite treatment course, but is poorly
tolerated and only elicits a sustained clinical response in a
subset of patients. In contrast, the current nucleoside/nucleo-
tides of choice (tenofovir disoproxil fumarate [tenofovir DF]
and entecavir) represent safe, well-tolerated, highly-effective
and durable on-treatment therapies. However, although nu-
cleoside/nucleotide therapies significantly improve clinical
end points, they generally require chronic administration to
maintain viral suppression and benefit.

Overall, the ability to “cure” HBV infection (with cure
being defined as the loss of both HBV DNA and HBV surface

antigen [HBsAg] plus seroconversion to anti-HBsAg anti-
body-positive, and maintenance of these end points
after the cessation of therapy) presents a formidable chal-
lenge that is not adequately met by current therapies. A
long-term study of tenofovir DF in HBV e antigen- (HBeAg-)
positive CHB patients indicated that 5 years of therapy led
to HBsAg loss in 10% of patients and full HBsAg seroconver-
sion in 8% of patients.4 Similarly, HBsAg loss was
observed in 8% of HBeAg-positive patients treated with
PEG-IFN-α for 1 year and followed for 3 additional years
(HBsAg loss in 8% of patients 4 years after treatment
initiation).5

This review will focus on new approaches for the treat-
ment of CHB. New therapeutic targets and approaches can be
divided into twomain categories: (1) therapies that target the
virus either directly or by targeting host factors required by
the virus, and (2) therapies targeting the host innate or
adaptive immune response. Before discussing new targets,
it is helpful to review the replication cycle of HBV and the
challenges it presents.
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Abstract Chronic hepatitis B virus (CHB) is managed effectively with either nucleoside/nucleo-
tide-based or interferon-based therapies. However, most patients receiving these
therapies do not establish long-term, durable control of infection after treatment
withdrawal. In particular, rates of hepatitis B surface-antigen loss and seroconversion to
antisurface-antigen antibody are very low. Thus, novel therapies and treatment
modalities are necessary to achieve either elimination of the virus from the liver or
durable immune control of hepatitis B virus (HBV) infection in the absence of chronic
therapy (“functional cure”). Here the authors review new targets and approaches for
treating CHB. These approaches can be divided into two broad categories—those
targeting the virus or host factors required by the virus and those targeting the innate or
adaptive immune systems. Unfortunately, although a variety of promising strategies
have been identified and several new approaches have achieved preclinical validation,
relatively few novel drug candidates are in active clinical studies to treat CHB. Thus,
functional cure of CHB infection remains an important therapeutic challenge.
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The HBV Viral Lifecycle

The viral lifecycle is summarized in ►Fig. 1 and the reader is
referred to reviews of HBV molecular virology for further
details.6,7 Several aspects of the viral lifecycle have profound
implications for antiviral therapy and bear emphasis. First,
HBV is a small virus (3.2 kilobases) that encodes few proteins
and is highly dependent on host machinery for replication (e.
g., transcription, translation, virus secretion). HBV therefore
presents few targets for selective antiviral intervention. Sec-
ond, covalently closed circular DNA (cccDNA) is a highly stable
episomal form of the viral genome that persists during potent
nucleoside/nucleotide therapy.8 This is because nucleoside/
nucleotides act downstream of cccDNA at the reverse tran-
scription step (►Fig. 1, step 7). Although nucleoside/nucleo-
tides can block the formation of new cccDNA (►Fig. 1, step 8),
they do not directly impact existing copies of cccDNA. Third, it
is important to note that nucleoside/nucleotide therapy
blocks production of new viral genomes (►Fig. 1, step 7),
but does not inhibit transcription of viral messenger RNA
(mRNA) (►Fig 1, step 4), translation of viral antigens (►Fig. 1,
step 5), or secretion of viral antigens (step 10). In other words,
antigenemia can occur independently of viremia (or suppres-
sion of viremia).

Approaches Targeting the Viral Lifecycle

New approaches targeting the virus directly or through host
factors required by the virus are reviewed below and are
presented sequentially according to the processes outlined
in ►Fig. 1.

Viral Entry
The HBV entry process has historically been poorly under-
stood due to the lack of robust in vitro infection systems. To
date, limited HBV infection has only been supported in
primary human or primary tupaia (tree shrew) hepatocytes
and in the well-differentiated human hepatic cell line Hep-
aRG. Using these systems, a series of peptide inhibitors
derived from the large surface antigen of HBVwere identified
to inhibit HBV infection with nanomolar potency.9 Not only
can these peptides prevent in vitro infection of both HBV and
HDV, but they are also effective in small animal models of
infection after subcutaneous administration.10,11 A therapeu-
tic candidate designated Myrcludex B was selected for devel-
opment and consists of a myristylated peptide containing
amino acids 2 to 48 of the HBV large surface antigen.
Mechanistically, Myrcludex B (or close analogs) appears to
work through binding the host receptor for HBV infection
(recently identified to be the sodium taurocholate cotrans-
porting polypeptide [NTCP]) and blocking attachment of the
virus.12 Myrcludex B recently completed a phase 1 safety and
pharmacokinetic study in healthy volunteers.13 Future Myr-
cludex B studies including a phase 2 multiple-dose therapeu-
tic study in CHB patients are eagerly awaited.

cccDNA
As indicated above, cccDNA represents a central obstacle to
curative therapy. The formation of new cccDNA (amplification)
in already infected cells can beblocked by replication inhibitors
(e.g., nucleoside and nucleotide analogs). However, the existing
pool of cccDNA in infected cells is refractory to treatment with
nucleoside/nucleotides. Conceptually, an approach directly
targeting and eliminating cccDNA could be curative. However,
despite the high value of targeting cccDNA, efforts in this area
are at early stages. Recently, two structurally related sulfon-
amide compounds were reported that block conversion of
relaxed circular HBV DNA into cccDNA at micromolar concen-
trations.14 The compounds were identified through a cell-
based high throughput screen and neither the mechanism
nor the target for these compounds is currently known.

A distinct approach to directly target cccDNA is the use of
zinc-finger nucleases (ZFNs). ZFNs combine a nonspecific
restriction enzyme domain with zinc-finger motifs that in-
troduce sequence specificity. Although this approach is at an
early stage of investigation, in vitro data indicate that ZFNs are
able to cleave HBV DNA in hepatoma cells.15 In addition,
although cleaved target DNA can be repaired, this process
often introduces mutations or deletions; mutation of HBV
DNA was also observed during in vitro analyses. Because the
HBV genome is compact and encodes multiple overlapping
reading frames, it may be highly susceptible to inactivation by
mutation. However, although the concept of specifically

Fig. 1 The hepatitis B virus (HBV) viral lifecycle. Infection of the host
hepatocyte starts with (1) attachment of the virus to a host receptor
and entry into the cytoplasm. (2) Once inside the cell, the virus
disassembles and delivers its genome to the nucleus. (3) During this
process, the relaxed circular genome of HBV is repaired and super-
coiled and chromatinized to form a covalently closed circular DNA
genome (cccDNA). (4) Host ribonucleic acid (RNA) polymerases
transcribe cccDNA to yield four HBV messenger RNAs, which are
exported to the cytoplasm and (5) transcribed by host ribosomes to
form viral proteins. (6) Viral core protein can polymerize around a
“pregenomic” viral RNA and the viral polymerase protein to form
immature nucleocapsids. (7) Within the nucleocapsids, viral reverse
transcription occurs and converts the pregenomic mRNA into a
partially double-stranded DNA genome. Mature DNA containing nu-
cleocapsids can either (8) cycle back to the nucleus to amplify the
nuclear pool of cccDNA or (9) acquire an HBsAg envelope and then be
secreted from the cell. (10) In parallel, but independently from virion
secretion, hepatitis B surface antigen (HBsAg) particles and viral e
antigen (HBeAg) protein are also secreted from the cell.
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inactivating HBV DNA by cleavage and/or mutation is attrac-
tive, this approach will face the clinical challenges of prefer-
entially delivering ZFNs to the liver; it also has the potential
for off-target cleavage. Currently, adeno-associated viral vec-
tors are being explored for ZFN delivery.16

Viral Transcription and mRNA Stability
Although it would be ideal to eradicate cccDNA from infected
cells, another approach is to functionally inactivate cccDNA
by either preventing transcription or degrading viral mRNA.
cccDNA transcription can be blocked using zinc-finger pro-
teins (ZFPs), in this case devoid of restriction nuclease do-
mains. ZFPs can selectively recognize specific HBV target
sequences with nanomolar affinity, and after binding, block
the binding of transcription factors to cccDNA and/or hinder
RNA polymerase read-through transcription. Proof of concept
has been established in vitro using duck HBV (DHBV) and in
cell lines with stable integrations of the X gene.17,18

Another approach to prevent transcription of cccDNA is to
functionally “silence” it epigenetically. Recent results suggest
that inactivation of cccDNA through epigenetic modifications
represents an important mechanism of action for IFN-α.19

Specifically, experiments in both cell culture and HBV-in-
fected uPA-SCID mice transplanted with human hepatocytes
indicated thatHBVmRNA levels aremarkedly reduced by IFN-
α at time points when cccDNA is not substantially affected.
Furthermore, reductions in viral mRNA correlated with re-
ductions in acetylated histones bound to cccDNA. Epigenetic
regulation of cccDNA therefore represents a novel opportu-
nity for modulation of cccDNA function. Although promising,
a conceptual challenge for this approach is selectivity, as
inhibition or activation of host epigenetic regulators may
also modulate host gene transcription.

As an alternative to interfering with transcription from
cccDNA, viral mRNA can be targeted directly by antisense
oligonucleotides, ribozymes, or RNA interference (RNAi). HBV
presents an ideal target for these technologies because all
viral transcripts overlap in the 3′ region and are coterminal.6

By targeting the 3′ region of HBVmRNAs, the production of all
HBV proteins could conceivably be blocked with a single RNA
therapeutic molecule. There is in vitro proof of concept that
hammerhead and hairpin ribozymes, as well as antisense
oligonucleotides reduce HBV transcript levels in cell culture
models.20–22 However, few recent reports in ribozyme and
antisense areas exist. In contrast, more progress has been
made using RNAi. Multiple investigators have demonstrated
that viral mRNA can be potently knocked down by RNAi, not
only in cell culture, but also in small animal models of
HBV.23–25 However, although the potential to knock down
viral proteins using RNA targeting approaches is tantalizing
scientifically, significant challenges remain in the area of drug
delivery. Nevertheless, multiple RNAi-based therapeutics
have moved into the clinic for other indications; therefore,
this approach could be considered for HBV.26

Viral Assembly
As indicated above, HBV genome replication takes place
exclusively within nucleocapsids; therefore, dysregulation

of capsid assembly will effectively block viral replication.
Multiple classes of compounds that interfere with HBVcapsid
formation have been described. These include a series of
heteroarylpyrimidines (HAPs),27,28 as well as a series of
phenylpropenamides.29–31 This class of inhibitors can have
very potent antiviral activity (nM EC50 values) and is fully
active against nucleoside-resistant strains of HBV.32 Mecha-
nistically, both phenylpropenamides and HAPs increase the
kinetics of capsid assembly, which disrupts the formation of
replication-competent nucleocapsids.33,34 HAPs have been
shown to have antiviral effects in small animal models of HBV
replication.35,36 However, there is no reported clinical expe-
rience with any compounds from this class to date.

Reverse Transcription
There are five widely approved nucleoside/nucleotide inhib-
itors for the treatment of CHB (tenofovir DF, entecavir,
lamivudine, adefovir dipivoxil, telbivudine). Clinical results
and the utility of these compounds have been well described
elsewhere.2,3 Although new nucleoside/nucleotides with
anti-HBV activity have been reported, both tenofovir DF
and entecavir are highly potent and have high barriers to
resistance. It is currently unclear whether new drugs in this
class would translate into further improvements in HBsAg
seroconversion.

Antigen and Virion Secretion
Current therapies are largely ineffective in preventing viral
antigen secretion; therefore, this represents a potential new
approach for therapy. Secreted viral antigens have been
reported to cause immune defects; hence, blocking antigen
secretion could foster improved host responses to chronic
infection.37,38 Functional inhibition of cccDNA transcription
(either by targeting cccDNA, viral transcription, or viral
mRNA stability as described above) will result in downstream
inhibition of antigen production. In addition, compounds
with more direct effects on antigen secretion have been
reported.

An exploratory amphipathic oligonucleotide therapeutic
termed REP 9AC’ is currently in clinical development for the
treatment of CHB.39 REP 9AC’ blocks secretion of HBsAg
subviral particles and causes HBsAg to accumulate inside
cells. Interestingly, REP 9AC’ does not block the secretion of
virions, consistent with studies that have suggested the
pathways for virion and subviral particles are distinct.40 In
pilot clinical studies, weekly intravenous infusions of REP
9AC’ resulted in the clearance of HBsAg from the serum of
HBeAg-positive CHB patients. Some patients who cleared
HBsAg became seropositive for anti-HBsAg antibody, and
the titers of anti-HBsAg were further enhanced by add-on
therapywith either PEG-IFN-α or thymosin-α, a peptide with
immunomodulatory activity.

Small molecule inhibitors of HBsAg secretion have also
been described. A class of imino sugars termed “glucovirs”
(e.g., N-nonyl-deoxynojirimycin) reduced secreted HBsAg
and HBV virions in vitro, and also had antiviral activity in
woodchucks infected with woodchuck hepatitis virus
(WHV).41,42 Glucovirs are believed to act by mimicking
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glucose residues on glycosylated proteins (including HBsAg)
and inhibiting host α-glucosidases. More recently, a class of
triazolopyrimidines that inhibit HBsAg secretion was identi-
fied through a high throughput screening effort.43,44 The
prototype “hit,” HBF-0259, inhibited the accumulation of all
three forms of HBsAg (large, middle, and small) in the media
of HBV-expressing cell lines with an EC50 of 1.5 µM. The
mechanism of action remains to be determined, but appears
to be distinct from that of the glucovirs.

Immunotherapeutic Strategies

Viruses that establish chronic infection employ awide variety
of strategies to avoid sterilizing immunity. With regard to
HBV, evasion of innate immunity may contribute to the
development of persistence, while a profoundly dysfunction-
al T-cell response is likely a key factor in the maintenance of
chronicity.45 Accordingly, over the past 20 years multiple
immunotherapeutic strategies have been evaluated in CHB
patients with the goal of reconstituting effective antiviral
control. Initial proof-of-concept was demonstrated by reso-
lution of CHB in the recipient of a bone marrow transplant
from a donor with immunity to HBV.46 In line with studies
linking HBV persistence to a defect in adaptive immunity,45

these early transplantation studies suggested that restoration
of HBV-specific T-cell immunity can clear persistent infec-
tion.47 Unfortunately, therapeutic translation of this knowl-
edge has proven difficult. Indeed, a variety of therapeutic
vaccination trials have yielded disappointing results and
efforts to boost antiviral immunity with recombinant cyto-
kines have also been largely unsuccessful. Accordingly, an
urgent need remains to develop new immunotherapeutics to
improve the rate of functional cure. Fortunately, recent
advances in our understanding of the nature of immune
dysfunction in chronic viral infections are leading to novel
immune-based strategies to treat CHB. These approaches are
briefly described below.

IFN Therapy
Currently, the only approved widely immunotherapeutic
agent for the treatment of CHB patients is IFN-α (pegylated
or nonpegylated). Despite more than 20 years of clinical use,
the mechanism(s) by which IFN-α controls HBV replication
are not completely understood. This remains an important
goal because mechanistic understanding of IFN-α activity
could drive rational design of novel immunotherapeutic
strategies. It is therefore noteworthy that recent studies
have shed new light on PEG-IFN-α treatment response.
Most importantly, it was determined that PEG-IFN-α does
not improve peripheral HBV-specific T-cell responses, and
that virologic responsemay instead be related to activation of
an NK cell subset.48,49 In addition, as discussed above, IFN-α
inhibition of cccDNA transcription may also be an important
mechanism of viral control.19

The importance of the direct antiviral response to IFN-α is
in line with the therapeutic activity of IFN-λwhich, by virtue
of a restricted receptor expression pattern, presumably lacks
many of the immunomodulatory functions (and associated

toxicities) of IFN-α.50,51 An interim analysis of a phase 2
clinical study with PEG-IFN-λ1a (BMS-914143) revealed that
this agent displayed at least comparable efficacy to PEG-IFN-α
through 24 weeks of treatment, with a superior safety profile
in most respects.52 Because these data indicate that direct
activation of hepatocytes by IFNs can induce a robust viro-
logic response, targeted delivery of IFN-α to the liver may also
be a useful therapeutic strategy.53

Cytokine Therapeutics
Elegant studies in the LCMV mouse model have highlighted
the potential of interleukin-7 (IL-7) and IL-21 for the treat-
ment of chronic viral diseases.54–58 Furthermore, IL-21 has
been shown to play a key role in the age-dependent response
to HBV in a transgenic mouse model,59 although defective IL-
21-producing T-cells have not been observed in young CHB
patients.60 Both rIL-7 and rIL-21 are in clinical development.
Although rIL-21 (BMS-982470) has so far only been tested in
cancer patients,61 rIL-7 (CYT107) is currently being evaluated
in a phase 1/2a trial in CHB patients in combination with
nucleoside/nucleotides (tenofovir DF or entecavir) and vacci-
nation (GenHevac).62 Encouragingly, rIL-7 has been well
tolerated in early-phase clinical studies in cancer and human
immunodeficiency virus (HIV) patients;62 therefore, data
from CHB patients are eagerly awaited.

Toll-Like Receptor (TLR) Agonists
Toll-like receptors are pattern-recognition receptors (PRRs)
that recognize a variety of broadly conserved pathogen-
associated molecular patterns (PAMPs). Pharmaceutical acti-
vation of TLRs is an attractive approach for the treatment of
CHB because agonism of these receptors triggers innate
immune responses and also stimulates adaptive immunity.
This approach is supported by the demonstration that TLR
activation can suppress hepadnavirus replication in vitro and
in animal models.63 Most notably, the small molecule oral
TLR7 agonist GS-9620 demonstrated S-antigen loss and se-
roconversion in thewoodchuckmodel of CHB64 and sustained
reduction of viremia and antigenemia in chronically infected
chimpanzees.65 GS-9620 is currently in phase 1b studies in
treatment-naïve patients as well as in patients virologically
suppressed with tenofovir DF.

Restoring HBV-Specific T-Cell Immunity
It is broadly accepted that clearance of acute HBV infection
requires a vigorous, multispecific CD8þ cytotoxic T-cell re-
sponse, whereas persistent infection is associated with a
limited and dysfunctional T-cell response.66 Although the
failure of nucleoside/nucleotides to typically achieve durable
HBV suppression is likely related to the lack of sustained
recovery of virus-specific T-cell function,67 a recent study
demonstrated that the HBV-specific T-cell response can in
fact be restored (at least after in vitro expansion) in those
select patients that do achieve HBsAg loss and seroconver-
sion upon therapy.68 This suggests that T-cell dysfunction
during CHB is reversible; therefore, therapeutic strategies to
restore effective antiviral T-cell response should be
considered.
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Therapeutic Vaccination
Over the past 10 years, therapeutic vaccination has been the
most frequently tested strategy to improve HBV-specific T-
cell function. Unfortunately, although vaccination with anti-
HBs/HBsAg complexes demonstrated modest virologic re-
sponse in a phase 2b study,69 the therapeutic efficacy of
classical vaccine approaches has been disappointing.70 How-
ever, the recent approval of the autologous dendritic cell
vaccine Provenge (Sipuleucel-T) for the treatment of meta-
static prostate cancer has demonstrated that therapeutic
vaccination can be a viable immunotherapeutic approach.
Although the complexity and high cost of autologous den-
dritic cell vaccination may preclude its use for the treatment
of CHB, promising alternative therapeutic vaccine strategies
are currently under development. These include adenovirus-
based (TG1050) and yeast-based (GS-4774) approaches. The
latter is of particular interest as this Tarmogen (targeted
molecular immunogen) incorporates multiple viral antigens
(HBx, HBsAg, and HBcAg), can induce effector CD4þ and CD8þ

T-cells following ex vivo stimulation of healthy and chronic
HBV donor samples and displayed significant activity in an
HBV-antigen-positive tumor-protection study in mice.71,72

Targeting T-Cell Inhibitory Receptors
Another potential strategy to boost antiviral T-cell responses
is to inhibit coinhibitory signals mediated by receptors such
as PD-1 and CTLA-4.73 Blocking PD-1 (or its ligand, PD-L1) is a
particularly attractive approach because it sits atop the
hierarchy of inhibitory receptor expression by intrahepatic
HBV-specific CD8þ T-cells74; the function of virus-specific-T-
cells from CHB patients can be improved by blocking PD-1 ex
vivo.75 In addition, treatment of chronically infected wood-
chucks with an anti-PD-L1 antibody together with entecavir
and therapeutic vaccination led to prolonged control of
viremia and antigenemia (M. Roggendorf, personal commu-
nication). An anti-PD-1 antibody (BMS-936558) and an anti-
PD-L1 antibody (BMS-936559) have demonstrated striking
responses in patients with advanced cancer, although treat-
ment was associatedwith a relatively high frequency of grade
3 and 4 toxicities.76,77 Similarly, blockade of CTLA-4 can also
be associatedwith serious side effects.78Despite a compelling
biological rationale, safety concerns likely explain the lack of
reported development for antibodies to PD-1 or other inhibi-
tory T-cell receptors for CHB.

Blocking Suppressive Cytokines and Regulatory T-Cells
in the Liver
In addition to reducing the profound antigen load in HBV
patients (discussed above), successful boosting of antiviral T-
cell immunity may also benefit from modulation of suppres-
sive cytokines in the liver microenvironment. Both IL-10 and
TGF-β can contribute to the tolerogenic properties of the liver
and blocking these cytokines can improve antiviral T and/or
NK cell function.79–82 Various inhibitors of TGF-β are current-
ly in preclinical and clinical development.83 Although some-
what controversial, several studies have indicated that
regulatory T-cells (Tregs)mayalso play a role in the inhibition
of HBV-specific T-cell function.84 Pharmaceutically, Tregs

could be depleted and reprogrammed with a CD25-blocking
monoclonal antibody such as daclizumab85 or inhibited by
TLR activation.86 Therapeutic inhibition of TGF-β or Tregs has
not been clinically validated in CHB patients, nor did these
approaches induce a virologic response in chronically in-
fected woodchucks when combined with IL-12 treatment.87

Conclusions and Perspectives for New
Therapies

Approved therapies, particularly tenofovir DF and entecavir
are able to manage disease in the majority of CHB patients,
although the rate of functional cure (HBsAg loss and serocon-
version) with these agents is low. Thus, there is an urgent
need to develop novel therapeutics to achieve a functional
cure, ideally with finite courses of therapy.

Strategically, any new approaches based on targeting the
virus, either directly or by inhibiting a host factor required for
infection, will need to establish that target inhibition ulti-
mately translates into improved HBsAg seroconversion. For
example, simply blocking viral replication, even by a mecha-
nism other than nucleoside/nucleotides, is unlikely to cure
infection unless it impacts the cccDNA reservoir or fosters an
enhanced immune response capable of controlling viral
replication. Directly targeting cccDNA is an attractive strate-
gy, although as a nucleic acid, cccDNA represents a challenge
for conventional drug discovery. Approaches such as zinc-
finger nucleases andmodulation of epigenetic regulators face
a challenge to establish selectivity. Instead, approaches such
as blocking antigen secretion or directly targeting viral RNA
are more likely to be technically feasible in the near term. It is
also hoped that the recent discoveryof theHBVentry receptor
will open new avenues to drug discovery by enabling more
relevant in vitro models for virus replication and host
response.12

The natural resolution of CHB in a small percentage of
patients annually highlights the potential of host immunity to
affect sustained viral control. Although immunotherapeutic
approaches have been largely unsuccessful to date, our grow-
ing understanding of the immune defects in CHB are enabling
the development of new strategies. PEG-IFN-λ1a and the TLR7
agonist GS-9620 represent promising immunotherapeutic
approaches; hopefully, additional immune-based agents
will soon follow these into the clinic. Although there is cause
for optimism with new immune-based approaches, it is
important to recognize the challenges of safely activating
the immune system. The high safety bar for new CHB thera-
pies may impede the development of immunotherapeutic
approaches (e.g., anti-PD-1 antibodies) that have demonstrat-
ed great promise in oncology.

Targeting viral proteins that have been reported to subvert
host immunity is an attractive approach because it alleviates
concerns related to “on target” toxicities. Unfortunately, these
host–virus interactions have yet to be comprehensively vali-
dated in physiologically relevant systems. This illustrates the
current challenge for HBV research and development: al-
though many potential new approaches to treat CHB have
been identified, therapeutic translation has been challenging
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and relatively few drug candidates have emerged and entered
clinical studies. In the coming years, it is hoped that this trend
can be reversed and that major strides can be made in
alleviating the global health care burden of HBV.
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